Bhaskara I, (flourished c. 629, possibly Valabhi, near modern Bhavnagar, Saurashtra, India), Indian astronomer and mathematician who helped to disseminate the mathematical work of Aryabhata (born 476).
His fame rests on three treatises he composed on the works of Aryabhata. Two of these treatises, known today as Mahabhaskariya (“Great Book of Bhaskara”) and Laghubhaskariya (“Small Book of Bhaskara”), are astronomical works in verse, while Aryabhatiyabhashya (629) is a prose commentary on the Aryabhatiya of Aryabhata. Bhaskara’s works were particularly popular in South India.
Planetary longitudes, heliacal rising and setting of the planets, conjunctions among the planets and stars, solar and lunar eclipses, and the phases of the Moon are among the topics Bhaskara discusses in his astronomical treatises. He also includes a remarkably accurate approximation for the sine function: in modern notation, sin x = 4x(180 − x)/(40,500 − x(180 − x)), where x is in degrees.
Bhāskara's work on calculus predates Newton and Leibniz by over half a millennium. He is particularly known in the discovery of the principles of differential calculus and its application to astronomical problems and computations. While Newton and Leibniz have been credited with differential and integral calculus, there is strong evidence to suggest that Bhāskara was a pioneer in some of the principles of differential calculus. He was perhaps the first to conceive the differential coefficient and differential calculus.
Using an astronomical model developed by Brahmagupta in the 7th century, Bhāskara accurately defined many astronomical quantities, including, for example, the length of the sidereal year, the time that is required for the Earth to orbit the Sun, as approximately 365.2588 days which is the same as in Surya siddhanta. The modern accepted measurement is 365.25636 days, a difference of just 3.5 minutes.
His mathematical astronomy text Siddhanta Shiromani is written in two parts: the first part on mathematical astronomy and the second part on the sphere.
The twelve chapters of the first part cover topics such as:
- Mean longitudes of the planets.
- True longitudes of the planets.
- The three problems of diurnal rotation.(Diurnal motion is an astronomical term referring to the apparent daily motion of stars around the Earth, or more precisely around the two celestial poles. It is caused by the Earth's rotation on its axis, so every star apparently moves on a circle, that is called the diurnal circle.)
- Syzygies.
- Lunar eclipses.
- Solar eclipses.
- Latitudes of the planets.
- Sunrise equation
- The Moon's crescent.
- Conjunctions of the planets with each other.
- Conjunctions of the planets with the fixed stars.
- The paths of the Sun and Moon.
The second part contains thirteen chapters on the sphere. It covers topics such as:
- Praise of study of the sphere.
- Nature of the sphere.
- Cosmography and geography.
- Planetary mean motion.
- Eccentric epicyclic model of the planets.
- The armillary sphere.
- Spherical trigonometry.
- Ellipse calculations.
- First visibilities of the planets.
- Calculating the lunar crescent.
- Astronomical instruments.
- The seasons.
- Problems of astronomical calculations.
Nice content keep writing
ReplyDelete